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Due to simple fact that satellite antenna
must be located outdoor and the modem
is usually located indoor or at some
distance there will always be a need to
connect the two with a length of RF
cable.

Below we take a look at how this cable
can affect the L-band link, analyze the
differences between cables, and finally
look for solutions to problems that arise
from using long cables.




* Modern satellite communication uses microwave frequencies in the range
from 4 to 40 GHz.

* There are many reasons for that, such as antenna size, beam forming and
propagation through atmosphere.

» Except for the low end of the range (4-6GHz) modems and software
defined radios today are unable to demodulate and process such high
frequency signals directly.

* Therefore frequency converters (up and down) are used to translate signals
from satellite band to modem and vice versa.

* The cables connecting converters to modems also carry DC power,
reference and control signals for the converters.

e Often antenna and modem are so far apart that cable lengths between
them reach dozens of meters.

* Whereas DC, reference and control signals are not affected much by the
long cables, L-band signals are.



7 TIMES microwave sysTems

Let’s take a look at typical RF
cable built by Times Microwave

Typical signal attenuation of RF cable

Attenuation vs. Frequency (typical)

10.0

What can we tell from this graph?

5§
§§ 1. Attenuation is proportional to
2w frequency
2. This dependency is clearly
linear (log — linear)
0.110 100 1,000 10,000

Frequency (MHz)

Attenuation dB/100 ft 0.7 0.9 15 19 27 39 5.1 5.7 6.0 6.8 108 130
Attenuation dB/100 m 22 29 5.0 6.1 89 128 16.8 186 196 222 355 427
Avg. Power kW 333 257 1.47 120 083 058 044 040 037 033 021 017




Different cables have different slopes

100
LMR195
LMR400

Hard line

Attenuation
(db per 100 feet)

10

1
10 100 1,000 10,000
Frequency (MHz)



We shall connect the cable to the source L-band signal, such as LNB
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This is the example of L-band spectrum

With four carriers from 1 to 4 GHz

In an ideal case all carriers from LNB to Modem
should be delivered without amplitude
distortion.

The phase distortion in cable is usually very
small so we will only focus on amplitude
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Let us study the cables closer and find differences between them

LMR400 LMR195
Construction Specifications Construction Specifications

Description Material In. (mm) Description Material

Inner Conductor Solid BCCAI 0.108 (2.74) Inner Conductor Solid BC 0.037 (0.94)
Dielectric Foam PE 0.285 (7.24) Dielectric Foam PE 0.110  (2.79)
QOuter Conductor Aluminum Tape 0.291 (739) Quter Conductor Aluminum Tape 0.116 (2.95)
Overall Braid Tinned Copper 0.320 (8.13) Overall Braid Tinned Copper 0.139  (3.53)
Jacket (see table) 0.405 (10.29) Jacket (see table) 0.195 (495)

Electrical Specifications

Performance Property Units us (metric)

Electrical Specifications

Performance Property Units us (metric) V(.elocity. of Propagation % 80

Velocity of Propagation % 84 Dielectric Constant NA 1.56

Dielectric Constant NA 1.38 Time Delay nS/ft (nS/m) 227 (4.17)
Time Delay nS/ft (nS/m) 1.20 (3.92) Impedance ohms 50

Impedance ohms 50 Capacitance pF/ft (pF/m) 254 (83.3)
Capacitance pF/ft (pF/m) 239 (78.4) Inductance uH/ft (uH/m) 0.064 (0.21)
Inductance uH/ft (uH/m) 0.060 (0.20) Shielding Effectiveness dB >90

Shielding Effectiveness dB >90 DC Resistance

DC Resistance

Cr s ohms/1000ft (km)  1.39 (4.56) Inner Conductor ohms/1000ft (/km) 7.6 (24.9)
Outer Conductor ohms/1000ft (km)  1.65 (5.4) Outer Conductor ohms/1000ft (/km) 4.9 (16.1)
Voltage Withstand Volts DC 2500 Voltage Withstand Volts DC 1000

Jacket Spark Volts RMS 8000 Jacket Spark Volts RMS 3000

Peak Power kW 16 Peak Power kW 25




The equivalent circuit of the cable — Telegrapher’s model

was originally developed in 1876 for describing behavior of long transmission lines

= L O G ©

(A) ARTIFICIAL TRANSMISSION LINE




What are these components?

LMR400 ‘ L- c LMR195
’T‘lm ‘

L=0.2uH & [ | | L=0.21uH

C=78.4pF | C=83.3pF

(A) ARTIFICIAL TRANSMISSION LINE

Electrical Specifications

Performance Property Units us (metric)

Electrical Specifications

Performance Property Units us (metric) V?'OCitY' of Propagation % 80
Velocity of Propagation % 84 Dielectric Constant NA 1.56
Dielectric Constant NA 1.38 Time Delay nS/ft (nS/m) 1.27 (4.17)
Time Delay nS/ft (nS/m) 1.20 (3.92) ohms
Q i pF/ft (pF/m)

pF/ft (pF/m) 239 (78.4) uH/ft (uH/m)

uH/ft (uH/m) 0.060 (0.20) Shiel ing i
DC Roglo >890 DC Resistance

esistance
hms/1000ft (/k 7 4.

Inner Conductor ohms/1000ft (km)  1.39 (4.6) B COCIOr L (, RIS L)
Outer Conductor ohms/1000ft (’km)  1.65 (5.4) Outer Conductor ohms/1000ft (/km) 49 (16.1)
Voltage Withstand Volts DC 2500 Voltage Withstand Volts DC 1000
Jacket Spark Volts RMS 8000 Jacket Spark Volts RMS 3000
Peak Power kw 16 Peak Power kW 25




Definitions

Insulator fill

* a (d) — radius (diameter) of inner conductor
* b (D) — radius (diameter) of outer conductor (inner surface of it)
e £ —dielectric constant of insulator

 1u—magnetic permeability of conductors

c e L 138 b
* Zo - characteristic impedance of the cable Zo= |- =— = log(;)
' i 1 ¢ Fun fact: Zo is not fre
° - — — = - Lo quency
v VeIOCIty of prOpagatlon v VL-C JVEU dependent. So 50 Ohm impedance

I of the cable can be
— measured with DC ohm-meter......
[% the only catch is: the cable has

to be infinitely long!

» At —time delay through length of cable At =



Back to our cables

Construction Specifications

Description ' EYCIGEL In. (mm)
M Inner Conductor Solid BCCAI 0.108 (2.74
Dielectric Foam PE 8
Outer Conductor Aluminum Tape
Overall Braid Tinned Copper ;
Jacket (see table) 0.405 (10.29)
0.2E~°
784512 hm)
78.4E Electrical Specifications
Performance Property Units us (metric)
by 138 Velocity of Propagation %
og (Z) _@ . log - 496(0hm) Dielectric Constant NA %
Time Delay nS/ft (nS/m) : (3.92)
Impedance ohms @
I 1 . Capacitance pF/ft (pF/m) B4
V= VI-C - VO2E-6.78.4F-12 - 252;538;136138 (m/s) Inductance uH/ft (uH/m) 0.060
Shielding Effectiveness dB >80
252,538,136.138 Al
Velocity of Propagation in % = ’ ’ : Inner Conductor ohms/1000ft (/km)  1.39 (4.6)
y pag ° 299,792,458.000 Outer Conductor ohms/1000ft (/km)  1.65 (5.4)
is a comparison with speed of light in free space Voltage Withstand Voits DC 2500
Jacket Spark Volts RMS 8000
Peak Power kW 16

Time delay of 1m cable: At = 5 — 3.96 (ps)



...back to our cables

LMR195

14

"~ VI.«C  V021E-6-833E-12

239,093,545.358

Velocity of Propagation in % =
299,792,458.000

= 239,093,545.358 (m/s)

is a comparison with speed of light in free space

Time delay of 1m cable: At = % = 4.18 (ps)

Construction Specifications

Description Material

Inner Conductor Solid BC
Dielectric Foam PE
Outer Conductor Aluminum Tape
Overall Braid Tinned Copper
Jacket (see table)

Electrical Specifications
Units

Performance Property

Velocity of Propagation % @
Dielectric Constant NA 1.56 O
Time Delay nS/ft (nS/m) 1.27
Impedance ohms
Capacitance pF/ft (pF/m) 4
Inductance uH/ft (uH/m) 0.064
Shielding Effectiveness dB >90

DC Resistance
Inner Conductor
Quter Conductor

ohms/1000ft (/km) 7.6
ohms/1000ft (/km) 4.9

Voltage Withstand Volts DC 1000
Jacket Spark Volts RMS 3000
Peak Power kW 2.5

(metric)

(4.17)

(24.9)
(16.1)




* We can tell from above that the Telegrapher’s model components
L and C are good for calculating some properties of the cable such as
characteristic impedance (Zo), velocity of propagation (v).

* Can we calculate loss based on the simple Telegrapher’s model?
The answer is NO. The LC components used above are lossless.

* The lossy Telegrapher’s model looks like that:

_fwf\ W w From this model we can tell that the
losses in the cable come from losses in
G §7~TC G; TC G §7:C metal conductors (R) and conduction
losses of the dielectric (G)




* What is missing in this model?

E 57 {:{\ Cables radiate. We must add radiation
losses.
R E W W Dielectric has losses expressed in tanb
G§7~'~C G?::c Gé::c

* Total losses of the cable: a = a + ap + ap + a;
a. - Loss due to metal conductivity (R)

ap - Loss due to dielectric loss tangent

a; - Loss due to conductivity of dielectric (G)

ar - Loss due to radiation



Q. - Loss due to metal conductivity:
Resistance per unit length

a. = 8.686 -
2 * ZO
* Resistance per unit length: fnﬂ {V“’;'pl + V“";'pz} (ohms/meter)
. Th ist d resistive |
» D-outer conductor diameter =2b .. frequency dependent

* d-inner conductor diameter = 2a
* U1, P1 Properties of outer conductor
* U, Po properties of inner conductor
Typical loss for LMR400, Cu center conductor, Al foil

Frequency, MHz 1100|500 1000 12000 5000 ___

ac, dB/meter 0.041 0.091 0.128 0.182 0.287



ap - Loss due to dielectric loss tangent:

ap=92.0216-1077 - /&, - tand - f (dB/meter)

Loss due to tand is also frequency dependent

Typical numbers for ap:
Foam polyethylene tan6é = 0.0001, £,=1.38 (LMR400 cable)

Frequency, MHz 1100|500 1000 12000 [S000 ___

ap, dB/meter 0.0010 0.0054 0.0108 0.0216 0.0541



a; - Loss due to dielectric conduction:

oy, 16360
G =

(dB/meter)

* Loss dielectric conduction is only a function of bulk material properties of
the dielectric.

e g — conductivity of polyethylene < 101> s/m

10-15
163\/6% = 1.3 - 10~12(dB/meter)

Therefore: a;=

No dielectric that is used in a good RF cable has noticeable conduction loss



ap - Loss due to radiation

* Loss due to radiation can be derived from specified shielding effectiveness.
* |[n case of LMR195 it is >90dB

Incident power

* shielding ef fectiveness = 10 - log( ) (dB)

Radiated power
Power radiated

- =10°

Incident power

* Radiation loss ap= 10" 10g(1—1-11o—9) =4.3-107° (dB)

Just like dielectric conduction loss, radiation of a good RF cable plays no
significant role in overall cable loss.



Let’s calculate cable loss vs frequency by adding a . and ap

LMR195

100.0000

10.0000

1.0000
50 5000

Frequency, MHz 150 250 450 900 1500 1800 2000 2500

Attenuation, dB/100m 6.2 8.1 141 18.4 249 358 470 51.8 548 61.8 98.5

And compare it with datasheet for LMR195

Attenuation dB/100 m 6.5 8.4 14.6 7 457 4 25.5 36.5 47.7 525 554 624 981



LMR400

100.0000

10.0000

1.0000
50 5000

Frequency, MHz 150 250 450 900 1500 1800 2000 2500 5300
Attenuation, dB/100m 2.3 29 5.1 6.7 91 131 173 19.2 20.3 23.0 37.2

Comparing with datasheet for LMR400

| Attenuation dB/100 m 22 29 5.0 6.1 89 12.8 16.8 18.6 19.6 222 355




So what is the difference between the cables?

* Thicker cables are less resistive because they have larger conductors: \
/f:(’ - {““’;'pl + “Hr;pz} - the larger D and d (or b and a) the smaller the ' E‘Eam

resistance. The current density is smaller in larger conductor.

* Thicker cables have less tané. Even if the same dielectric is used (foam PE or
PTFE) the foaming in a larger cable is easier to achieve, more porosity - less
dielectric loss. Tiny amount of foamed dielectric in thin cable is unable to hold
the center conductor in place. Therefore foam is more dense in thin cables (which
we can tell from dielectric constant €: 1.38 in LMR400 and 1.56 in LMR195)

* Thicker cables have less dielectric conductive loss. The dielectric in thicker cable is
more porous and conductors are farther apart. Even though the cables in our
examples above have no noticeable loss there may be some cables with solid
dielectrics where conduction starts to play role

* Thicker cables have less radiation loss, also because large surface area of outer
conductor presents less current density. In some poorly shielded cables this will
play role too.




So this is how to chose cable more minimum amplitude distortion:

 The thicker the better

* Solid center conductor has less resistivity than stranded. Same applies to
the outer conductor (rigid cables have less resistive loss)

e Pay attention to the dielectric (foam has less loss)

* Good cables have few layers of outer conductor. This helps the shielding
effectiveness and maintains the integrity of the cable when bent.

But in the end any cable of .
significant length will have e mo
frequency dependent loss '
and will produce amplitude ot
distortion of the signal

freq, GHz

dBm{Out




What can be done about amplitude distortion caused by the cable?

In order to compensate frequency dependent loss of this circuit (our cable):

—_— YT AN Y
Rl ;- Fra

G§F~‘\C G§

An obvious solution would be to design this circuit:

RF-IN A A RF-OUT

Such circuits

are called
frequency
equalizers




The frequency response of equalizer:
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LNB output Cable loss
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Let’s
simulate it
with the
cable

the only
problem
IS...

now all
carriers
have low
albeit equal
power
levels
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Now that we have an active equalizer, why spend money on a better

cable?
Effect of cable loss/slope on system NF and Gain:

Example. Low Noise Downconverter case. LNB NF=1dB, Gain=55dB.
Signal level to modem after cable attenuation and compensation is “0dBm per tone

Length =L ;
Since we fully compensate the cable loss with
How do we expect the system NF to behave? According to Friis Noise Formula: the amplifier gain (i.e. Cable loss ~= G) we
* When cable loss << LNB Gain then NF will not get affected show this Gain value on the plots below. To
* When cable loss is compatible with LNB Gain NF will get degraded a little orove that loss is compensated we show the
* When cable loss is > LNB Gain NF will get affected a lot oower level to modem for all cases to be

approximately the same (~0dBm per tone)
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Thicker cables with better RF properties have less effect on system NF o
Gain required to compensate the cable loss and slope becomes unmanageable for poorer cables. This is true

for both down- and up-converters.
The problem of NF degradation goes away only when the amplifier is at the LNB side i.e. before the cable.




The problem of linearity

* The examples above assumed ideally linear amplifiers

* The real non-linear amplifier placed before the cable in equalizer
configuration will have to be able to handle the power of 1W for a
equalizer/cable loss of 30dB in order to deliver to modem undistorted
signal of 0dBm

* The configuration above can preserve the NF when using good cable but
still has a shortfall: even good cables at 30 meters will exhibit 6dB loss at
higher frequencies. An equalizer will make all frequencies have 10dB loss
(compensation plus intrinsic loss). This means that the amplifier has to
have 10dB higher Third Order Intercept point as compared with the LNB
output in order to have the same linearity.
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Above: Intermod product at 1GHz, 4GHz (were there is more cable loss) and System NF at all frequencies

Two-tone measurement at 1MHz apartis a
standard way to evaluate the intermodulation

product and hence the linearity of a device.
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As cable length increases its loss increases too and system needs more equalization (which is a loss too)
linearity gets worse. Compare intermod at 1GHz with 4GHz where is even more loss.
NF so far is not affected because there is not too much loss after the LNB



Let’s change the configuration and compare two lengths of LMR400 again
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Notice that Intermodulation product becomes more equal at 1GHz and 4GHz and worst case improves from -44dBm to -65dBm.
System NF as a good as in previous configuration
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Increasing cable length from 30 to 50 meters does not affect the performance unlike in previous configuration.



Can we get away with 50 meter LMR195 cable?
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The answer is NO! the Noise Figure will suffer due to too much loss (we needed 44dB of amplifier gain to compensate for it.
The Intermod is not affected because the signal level into the amp is very low.



s amplitude/frequency imbalance fatal and
why do we need the equalizer?

* On short runs of cable the problems with amplitude slope are not severe.

 Modems usually do not require signals at low end of the spectrum to be
equal to those at other parts of the spectrum as they can tune to individual
carriers, amplify and process the signals.

* Long runs of cable (50, 100 meters or more), power splitters and other
attenuating equipment in-line can present the problem. Attenuation can be
so high that signal level drops below modem sensitivity level.

e Some software defined radios (SDR) may receive wideband signals from
1GHz to 4GHz and severe slope may present problems for processing.



How to deal with very long lengths of cable?

* As shown above extra long stretches of cable (or usage of poor cable) before
active equalizer will worsen the system Noise Figure.

» Adding gain/slope will not improve the Noise Figure.
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Feasible solution:
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*Some of the IMD degradation in above two examples come from co-existence of all four carriers in the same signal path



Conclusions

* One cannot get away with poor performance cables. The longer the cable
the more pronounced is the difference between good cable and the poor
one.

* |t is possible to use thin RF cables such as LMR195 on short runs

* |t is possible to have an active equalizer with adjustable gain and slope to
compensate frequency dependent cable loss and still maintain system
Noise figure and OIP3, provided that cable chosen is of good quality.

* |t is possible to daisy chain cable length with in-line active equalizers to
achieve minimum NF and IMD degradation.

* |t is possible to utilize discrete slope settings to accommodate a variety of
cable lengths. Adjustable gain is a must.
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